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Qui suis-je?

Parcours
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• Théorie de la preuve: preuves infinitaires, hyperséquents

• Vérification de protocoles cryptographiques

Enseignement à l’ENS Paris-Saclay

• Enseignements en L3, M1, M2 et prépa agrégation,
notamment en logique, sécurité, programmation et génie logiciel
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Security & Privacy

Increasingly many activities are becoming digitalized.

These systems must ensure important properties:

• security: secrecy, authenticity, no double-spending. . .

• privacy: anonymity, absence of tracking. . .

Frequent flaws at various levels can be avoided using science:

• hardware, software and specifications;

• cryptographic primitives and protocols.

3/27



Security & Privacy

Increasingly many activities are becoming digitalized.

These systems must ensure important properties:

• security: secrecy, authenticity, no double-spending. . .

• privacy: anonymity, absence of tracking. . .

Frequent flaws at various levels can be avoided using science:

• hardware, software and specifications;

• cryptographic primitives and protocols.

3/27



Security & Privacy

Increasingly many activities are becoming digitalized.

These systems must ensure important properties:

• security: secrecy, authenticity, no double-spending. . .

• privacy: anonymity, absence of tracking. . .

Frequent flaws at various levels can be avoided using science:

• hardware, software and specifications;

• cryptographic primitives and protocols.

3/27



Cryptographic protocols: a naive example

Each tag (Ti ) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki )

Scenario under consideration:

• roles R, T1, . . . , Tn; arbitrary number of sessions for each role

• attacker can intercept messages, inject new messages

Readers correctly authenticate tags.

Tags can be tracked: privacy violation.

• The attacker can obtain the pseudonym h(0, ki ) from a tag.
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This talk

Part 1: Formal proofs of cryptographic protocols

• The computational and symbolic models

• Existing verification techniques

Part 2: Modelling and verifying unlinkability

• A formal definition of strong unlinkability

• Synthesizing sufficient conditions from attacks

• Verifying conditions using state-of-the-art tools

This is based on joint work with Lucca Hirschi (LORIA),
Stéphanie Delaune (IRISA) and Solène Moreau (IRISA).
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Part 1/2

Formal Proofs of Cryptographic Protocols



The computational model
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Messages = bitstrings

Secrets = random samplings

Primitives = PTIME Turing machines

Participants = PPTIME Turing machines

In general, properties only hold with overwhelming probability,
under some assumptions on cryptographic primitives.

Example (Unforgeability, EUF-CMA)

There is a negligible probability of success for the following game,
for any attacker A:

• Draw k uniformly at random.

• 〈u, v〉 := AO where O is the oracle x 7→ h(x , k).

• Succeed if u = h(v , k) and O has not been called on v .
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Naive protocol in the computational model

Authentication

Attacker can interact with tags and readers,
wins if some reader accepts a message that has not been emitted by a tag.

• Attacker has to obtain some h(nR , ki ) without querying Ti on nR .

• Impossible if h is unforgeable.

Privacy

Attacker interacts with either TA,TB or TA,TA

wins if he guesses in which situation he is
(with probability significantly different from 1

2 ).

• Success with probability almost 1 thanks to pseudonyms.

Proofs in computational model are tedious, error-prone.
Formal verification techniques have been developed first for
more abstract models. . .
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A symbolic model: messages
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Messages = terms modulo equations

Secrets = fresh names

(no probabilities)

Example (Equational theories)

• Hash functions: no equations.

• Xor: associativity, commutativity, neutrality and cancellation.
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Messages = terms modulo equations

Secrets = fresh names

(no probabilities)

Definition (Deduction)

Given a set of private names E and known messages σ = {xi 7→ mi}i∈[1;n],
message s is deducible when there R such that Rσ =E s
and R does not contain any name of E .

Example

With E = {n, k} and σ = { x 7→ n ⊕ h(n, k), y 7→ n },
deduce h(n, k) using R = . . .
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Definition (Deduction)

Given a set of private names E and known messages σ = {xi 7→ mi}i∈[1;n],
message s is deducible when there R such that Rσ =E s
and R does not contain any name of E .

Example

With E = {n, k} and σ = { x 7→ n ⊕ h(n, k), y 7→ n },
deduce h(n, k) using R = x ⊕ y .
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Messages = terms modulo equations

Secrets = fresh names

(no probabilities)

Definition (Static equivalence, σ ∼ σ′)

Given a set of private names E , two frames σ and σ′ with same domain
are statically equivalent when, for any R1 and R2,

R1σ =E R2σ iff R1σ
′ =E R2σ

′

Example (Empty E, or no equation involving h (and names))

Let E = {k, n,m}, σ = {x 7→ h(n, k), y 7→ n} and σ′ = {x 7→ m, y 7→ n}.
We have σ ∼? σ′

and σ ∪ {z 7→ k} 6∼ σ′ ∪ {z 7→ k}.
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A symbolic model: participants

Participants modelled using a process algebra, e.g. applied π-calculus.

Example (Naive protocol)

Ti
def
= in(c , x).out(c, h(x , ki ))

R
def
= new n.out(c, n).in(c , y).if ∃i . y = h(n, ki ) then out(c , ok)

S
def
= new k1, . . . , kn.(!T1 | . . . | !Tn | !R)
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R
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= new n.out(c, n).in(c , y).if ∃i . y = h(n, ki ) then out(c , ok)

S
def
= new k1, . . . , kn.(!T1 | . . . | !Tn | !R)

Accessibility

Given a system S , does there exist an attacker process A
such that S | A executes towards a bad situation:
secret is revealed, agent accepts inauthentic message, etc.

Example

For any A, S | A 6 ∗ (out( , ki ) | ) i.e. keys remain secret.
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A symbolic model: participants

Participants modelled using a process algebra, e.g. applied π-calculus.

Example (Naive protocol)

Ti
def
= in(c , x).out(c, h(x , ki ))

R
def
= new n.out(c, n).in(c , y).if ∃i . y = h(n, ki ) then out(c , ok)

S
def
= new k1, . . . , kn.(!T1 | . . . | !Tn | !R)

May-testing equivalence S ≈m S ′

A system S satisfies a test A when S | A may “execute successfully”.
Two systems are may-testing equivalent when they satisfy the same tests.

Example

T1 | T2 and T1 | T1 are not equivalent.
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A symbolic model: labelled transition system (LTS)

Avoid explicit attacker by studying interaction traces.

(P,Φ) α−→ (Q,Ψ) where

{
States combine process P with frame Φ = E .σ.
Actions α of the form in(c,R) or out(c ,w).

Example

(Ti | Tj ,Φ0)
in(c,0).in(c,0).out(c,w).out(c,w ′)−−−−−−−−−−−−−−−−−−−−→ (0,Φ0 ∪ { w 7→ h(0, ki ),w

′ 7→ h(0, kj) })

Equivalences

• Trace equivalence (P,Φ) ≈t (Q,Ψ), almost coincides with ≈m.

• Bisimilarity ≈s is “the finest reasonable equivalence”.
Comes with logical characterization, and bisimulation proof technique.
Coincides with trace equivalence on determinate processes.

• Diff-equivalences, even stronger, are equivalence notions expressed as
reachability problems for bi-processes.
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Verification in the symbolic model: accessibility

Accessibility problems are undecidable in general:

• unbounded protocol executions (unbounded sessions);

• unbounded recipes (message derivations by the attacker).

Verification techniques for bounded sessions:

• Symbolic execution + decidable constraint solving for some primitives.

For unbounded sessions:

• Semi-decision based on Horn clause abstraction (Proverif).

• Semi-automated prover based on multiset rewriting (Tamarin).

Some mature tools with industrial successes

• Casper, Proverif, AVISPA, Scyther, Tamarin
(Oxford, Inria Paris & Nancy, ETH Zürich, CISPA)

• Breaking/fixing/proving Google SSO, 3G/5G authentication,
Neuchatel & Belenios e-voting, WPA2, Signal, TLS 1.3, etc.
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Verification in the symbolic model: equivalence

Equivalence also undecidable in general: it subsumes secrecy.

For bounded sessions
it is possible to (semi)decide trace equivalence for some primitives:

• Symbolic execution and constraint solving:
SPEC (ANU), Apte (LSV & Inria Nancy) and DeepSec (Inria Nancy)
(protocol equivalence is coNEXP-complete)

• Horn-clause resolution: Akiss (Inria Nancy)

• Planning and SAT-solving: SAT-Equiv (LSV & Inria Nancy)

For unbounded sessions:

• Proverif and Tamarin can verify diff-equivalence.

• More specialized techniques e.g. based on type systems,
small attack properties.
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Part 2/2

Modelling and Verifying Unlinkability



An informal definition of unlinkability

ISO/IEC standard 15408

ensuring that a user may make multiple uses of a service or resource
without others being able to link these uses together

This is stronger than anonymity, and prevents any form of tracking.
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Strong unlinkability with generic readers

Definition from [B., Delaune & Moreau, 2020]
inspired by [Arapinis et al., 2010]:

!R | ! new k. !T (k) ≈t !R | ! new k . T (k)

multiple-session/real scenario single-session/ideal scenario

Key contribution:

• A precise model of readers with shared database of credentials.

Remarks:

• All tags (resp. readers) on same channel: ≈t and ≈s a priori differ.

• Tag sessions can be made sequential using alternative construct

!

T .
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The problem

In its general formulations, strong unlinkability cannot be directly verified
using off-the-shelf verification tools:

Tamarin and Proverif’s diff-equivalences are too constraining.

Our approach:

Identify reasonable conditions
that imply unlinkability

and are easier to verify using existing tools.
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Condition 1

Our naive protocol fails unlinkability
because messages leak information about the tags’ identity.

Definition (Frame opacity)

For any execution of the multiple-session system (Sm, ∅) t−→ (S ′m,Φ),

Φ ∼ Φideal(t)

where messages of the ideal frame Φideal(t)
may depend on session nonces but not on identity parameters.

Example (Basic Hash protocol)

Ti → R : 〈nT , h(nT , ki )〉 idealized into 〈n1T , n2T 〉
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Condition 2

Definition (Well-authentication)

In any execution of the multiple-session system,
when some agent evaluates a test successfully,
it must have had an honest interaction with a dual agent.

Consider the LAK protocol:

R → T : nR
T → R : 〈nT , h(nR ⊕ nT , k)〉
R → T : (* not useful *)

Readers do not properly authenticate tags: why?
This leads to a failure of unlinkability: why?
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Condition 3

Consider the OSK protocol,
using unkeyed hash functions g and h and a parameter b ∈ N:

• Each tag has a secret k , readers have a database of known secrets.

• At each round the tag emits g(h(k)) and updates k := h(k).

• Readers accept messages of the form g(hn(k)) for n ∈ [0; b] and
k in the database, which is then replaced by hn+1(k).

It is not unlinkable: why?

Definition (No desynchronization)

In any execution of the multiple-session system, if a tag and reader have
an honest interaction, then all of their tests must evaluate successfully.

20/27
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Conditions are sufficient

Theorem

Strong unlinkability holds for all protocols that satisfy
frame opacity, well-authentication and no desynchronization.

Proof

There is essentially only one way to map a multiple-session execution to a
single-session execution. That execution is feasible and indistinguishable:

• If a test passes in the multiple-session execution, it results from an
honest interaction. It is still honest in the single-session execution,
and thus passes.

• If a test fails in the multiple-session execution, it must result from a
dishonest interaction. The dishonest interaction must lead to a failed
test on the single-session side.

• The multiple and single-session frames are indistinguishable from their
idealizations, which coincide.
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Conditions are reasonable and verifiable

We have been able to formally verify our conditions in the symbolic model
for several protocols, using Proverif and Tamarin.

• Several RFID protocols, including fixed versions of LAK and OSK

• E-passport protocols BAC and PACE (with minor fixes)

• Some proofs of more complex protocols, involving
counters or advanced primitives such as zero-knowledge proofs

First-time proofs!

We could not carry out some analyses due to
insufficient support for xor in these tools.

We encountered a single case of incompleteness:
Tamarin finds a failure of well-authentication for PACE, but this failure
seems harmless for unlinkability.
(Interestingly, well-auth. holds for Proverif due to weaker equational theory.)
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Discussion: earlier work

Two-agent games

Game where attacker chooses two tags and must distinguish them.

• Proposed in [Avoine, 2005], with incorrect privacy claim for OSK.

• Strengthened in [Juels & Weis, 2006].

Three-agent games

Attacker has to distinguish between T1,T1 and T2,T3.

• Two-agent games miss attacks involving concurrent tag sessions.

• Formal (bounded) verification of OSK in [Brusó et al., 2010]
due to abusive removal of reader.

Weak and strong unlinkability [Arapinis et al., 2010]

• Weak unlinkability proposed as reasonable definition,
but actually misses attacks.

• Strong unlinkability viewed as a proof technique, hence bisimilarity.

• Incorrect claim of unlinkability for BAC e-passport protocol.
Bisimilarity actually leads to systematic failure of unlinkability for
identity-specific readers!
(That part of the story is not over, as as [Filimonov et al., 2019] reports on

an attack against BAC that our trace-equivalence-based definition misses.)
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Discussion: computational model

Some computational soundness results show that
symbolic abstractions imply computational indistinguishability.

They remain limited by strong assumptions.

• No sound symbolic abstraction of xor in presence of replication.

• Most verification in symbolic model is disconnected from these results.

Alternative: direct verification in the computational model.

• Cryptoverif mimicks the cryptographer’s game-hopping proofs.

• Easycrypt relies on probabilistic relational Hoare logic.

• With several colleagues, current work on the Squirrel prover. . .
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Conclusion

This talk

• Formal models for cryptographic protocols.

• All kinds of problems: modelling, theory & practice.

What’s next

• Currently developing a new prover in the computational model.

• Proofs of unlinkability with stronger guarantees,
also new proofs for protocols involving xor.

Privacy

• A crucial need in modern societies, slowly being recognized as such.

• Requires broader analysis involving probabilities, time, data, . . .
See side-channel attacks, differential privacy, etc.
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