Quantitative Games on Graphs

Benjamin Monmege, Aix-Marseille Université

Séminaire ENS Rennes

Games for synthesis

$\frac{0000000}{\infty-\infty}$

Reactive syr stems

Games for synthesis

Crucial to make the critical programs correct

Games for synthesis

Crucial to make the critical programs correct

\models Specification

Games for synthesis

Crucial to make the critical programs correct

\models Specification

Instead of verifying an existing system...

Games for synthesis

Crucial to make the critical programs correct

\rightleftharpoons Specification

Instead of verifying an existing system...
Synthesise a correct-by-design one!

Games for synthesis

Crucial to make the critical programs correct

$$
\models \text { Specification }
$$

Instead of verifying an existing system...
Synthesise a correct-by-design one!

Winning strategy = Correct system

2-player zero-sum games on graphs

Finite directed graphs Vertices of Player \bigcirc

Vertices of Player \square

2-player zero-sum games on graphs

Finite directed graphs Vertices of Player \bigcirc
 Vertices of Player \square

Play: move a token along vertices

2-player zero-sum games on graphs

Finite directed graphs
Vertices of Player \bigcirc
Vertices of Player \square

Play: move a token along vertices

Infinite number of rounds
Outcome: infinite path

2-player zero-sum games on graphs

Finite directed graphs Vertices of Player \bigcirc

Vertices of Player \square

Play: move a token along vertices

Infinite number of rounds
Outcome: infinite path
v_{0}

2-player zero-sum games on graphs

Finite directed graphs Vertices of Player \bigcirc

Vertices of Player \square

Play: move a token along vertices

Infinite number of rounds Outcome: infinite path

2-player zero-sum games on graphs

Finite directed graphs Vertices of Player \bigcirc

Vertices of Player \square

Play: move a token along vertices

Infinite number of rounds Outcome: infinite path

$$
v_{0} \longrightarrow v_{1} \longrightarrow v_{0}
$$

2-player zero-sum games on graphs

Finite directed graphs Vertices of Player \bigcirc

Vertices of Player \square

Play: move a token along vertices

Infinite number of rounds
Outcome: infinite path

$$
v_{0} \longrightarrow v_{1} \longrightarrow v_{0} \longrightarrow v_{4}
$$

2-player zero-sum games on graphs

Finite directed graphs Vertices of Player \bigcirc

Vertices of Player \square

Play: move a token along vertices

Infinite number of rounds
Outcome: infinite path

$$
v_{0} \longrightarrow v_{1} \longrightarrow v_{0} \longrightarrow v_{4} \longrightarrow v_{0} \cdots
$$

Who is winning?

Who is winning?

$\mathrm{Win}_{\mathrm{O}} \subseteq V^{\omega}$
set of good outcomes for Player 1

Who is winning?

$\mathrm{Win}_{\mathrm{O}} \subseteq V^{\omega}$
set of good outcomes for Player 1
$\mathrm{Win}_{\square}=V^{\omega} \backslash \mathrm{Win}_{\mathrm{O}}$

Who is winning?

$$
\begin{aligned}
& \text { Win }_{\mathrm{O}} \subseteq V^{\omega} \quad \text { set of good outcomes for Player } 1 \\
& \mathrm{Win}_{\square}=V^{\omega} \backslash \mathrm{Win}_{\mathrm{O}} \quad \text { (zero-sum game) }
\end{aligned}
$$

Examples of winning conditions:

$$
\operatorname{Win}_{\mathrm{O}}=\{\pi \mid \pi \text { visits Good }\}
$$

Who is winning?

$$
\begin{aligned}
& \text { Win }_{\mathrm{O}} \subseteq V^{\omega} \quad \text { set of good outcomes for Player } 1 \\
& \text { Win }_{\square}=V^{\omega} \backslash \mathrm{Win}_{\mathrm{O}} \quad \text { (zero-sum game) }
\end{aligned}
$$

Examples of winning conditions:

$$
\begin{aligned}
& \operatorname{Win}_{\mathrm{O}}=\{\pi \mid \pi \text { visits Good }\} \quad \text { reachability } \\
& \operatorname{Win}_{\mathrm{O}}=\{\pi \mid \pi \text { visits Good infinitely often }\} \quad \text { Büchi }
\end{aligned}
$$

Strategies

Unfolding of the game graph:

Strategies

Unfolding of the game graph:

Strategies

Unfolding of the game graph:

Strategy for Player \bigcirc : one choice in each node of Player \bigcirc in unfolding

$$
\sigma_{\mathrm{O}}: V^{*} V_{\mathrm{O}} \rightarrow E
$$

Strategies

Unfolding of the game graph:

Strategy for Player \bigcirc : one choice in each node of Player \bigcirc in unfolding

$$
\sigma_{\mathrm{O}}: V^{*} V_{\mathrm{O}} \rightarrow E
$$

Strategy is winning if all paths of the resulting tree are winning

Types of strategies

Types of strategies

Strategy (infinite memory)

Types of strategies

Strategy (infinite memory)

Memoryless/positional strategy

$$
\sigma_{\mathrm{O}}: V_{\mathrm{O}} \rightarrow E
$$

Types of strategies

Strategy (infinite memory)

Finite memory strategy
$\sigma_{\mathrm{O}}: V^{*} V_{\mathrm{O}} \rightarrow E$ representable with a Moore machine

Memoryless/positional strategy

Types of strategies

Strategy (infinite memory)

Finite memory strategy
$\sigma_{\mathrm{O}}: V^{*} V_{\mathrm{O}} \rightarrow E$ representable with a Moore machine

Memoryless/positional strategy

$$
\sigma_{\mathrm{O}}: V_{\mathrm{O}} \rightarrow E
$$

Randomised strategy
$\sigma_{\mathrm{O}}: V^{*} V_{\mathrm{O}} \rightarrow \operatorname{Distr}(E)$

Decision problem

Given a game graph G and a winning condition $\mathrm{Win}_{\mathrm{O}}$ decide if Player \bigcirc has a winning strategy.

Decision problem

Given a game graph G and a winning condition $\mathrm{Win}_{\mathrm{O}}$ decide if Player \bigcirc has a winning strategy.

What about Player \square ?
Determinacy (true in a large class of objectives, e.g. all ω-regular objectives)
either Player \bigcirc has a winning strategy for $\mathrm{Win}_{\mathrm{O}}$
or Player \square has a winning strategy for $\mathrm{Win}_{\square}=V^{\omega} \backslash \mathrm{Win}_{\mathrm{O}}$

Example: finite trees

Example: reachability in graphs

$\operatorname{Win}_{\mathrm{O}}=\{\pi \mid \pi$ visits Good $\}$
$\operatorname{Win}_{\square}=\{\pi \mid \pi$ avoids Good $\}$

Example: reachability in graphs

$\operatorname{Win}_{\mathrm{O}}=\{\pi \mid \pi$ visits Good $\}$
$\operatorname{Win}_{\square}=\{\pi \mid \pi$ avoids Good $\}$

Apply the same bottom-up rule...

Example: reachability in graphs

$\operatorname{Win}_{\mathrm{O}}=\{\pi \mid \pi$ visits Good $\}$
$\operatorname{Win}_{\square}=\{\pi \mid \pi$ avoids Good $\}$

Apply the same bottom-up rule...
...to decide the winner and find winning strategies

Games for synthesis

Crucial to make the critical programs correct

$$
\models \text { Specification }
$$

Instead of verifying an existing system...
Synthesise a correct-by-design one!

Winning strategy = Correct system

Games for synthesis

Crucial to make the critical programs correct

Games for synthesis

Crucial to make the critical programs correct

\models Specification
Winning condition

Instead of verifying an existing system...
Synthesise a correct-by-design one!

Winning strategy = Correct system

Games for synthesis

Crucial to make the critical programs correct

\models Specification
Winning condition

What if several winning strategies for Player \bigcirc ? Need for a quality measure, to choose the best one...
Reactive By stems
strategy = Correct system

Quantitative games on graphs

Quantitative games on graphs

Weighted graph: weights=rewards

Quantitative games on graphs

Weighted graph: weights=rewards

$$
v_{0} \xrightarrow{4} v_{1} \xrightarrow{0} v_{0} \xrightarrow{s} v_{4} \xrightarrow{-2} v_{0} \ldots
$$

Quantitative games on graphs

$$
v_{0} \xrightarrow{4} v_{1} \xrightarrow{0} v_{0} \xrightarrow{s} v_{4} \xrightarrow{-2} v_{0} \ldots
$$

Quantitative games on graphs

Weighted graph: weights=rewards

Be good in total: total-payoff
may not exist..

$$
v_{0} \xrightarrow{4} v_{1} \xrightarrow{0} v_{0} \xrightarrow{5} v_{4} \xrightarrow{-2} v_{0} \cdots
$$

Quantitative games on graphs

Weighted graph: weights=rewards

Be good in total: total-payoff

$$
\sum_{i=0}^{\infty} r_{i}
$$

may not exist...
Be good in average: mean-payoff $\quad \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} r_{i}$

$$
v_{0} \xrightarrow{4} v_{1} \xrightarrow{0} v_{0} \xrightarrow{s} v_{4} \xrightarrow{-2} v_{0} \cdots
$$

Quantitative games on graphs

may not exist...
Be good in average: mean-payoff $\quad \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} r_{i}$

$$
\operatorname{Win}_{\mathrm{O}}=\{\pi \mid \operatorname{MP}(\pi) \geq c\} \text { not } \omega \text {-regular... }
$$

$$
v_{0} \xrightarrow{4} v_{1} \xrightarrow{0} v_{0} \xrightarrow{5} v_{4} \xrightarrow{-2} v_{0} \cdots
$$

Mean-payoff games

Mean-payoff games

Mean-payoff games

Greatest mean-payoff that Player \bigcirc can guarantee:

$$
\operatorname{Val}_{\mathrm{O}}(v)=\inf _{\sigma_{\square} \sigma_{\mathrm{O}}} \sup \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)
$$

Mean-payoff games

Greatest mean-payoff that Player \bigcirc can guarantee:

$$
\operatorname{Val}_{\mathrm{O}}(v)=\inf _{\sigma_{\square} \sigma_{\mathrm{O}}} \sup \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)
$$

Smallest mean-payoff that Player \square can guarantee:

$$
\operatorname{Val}_{\square}(v)=\sup _{\sigma_{0} \inf _{\square}} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)
$$

Mean-payoff games

Greatest mean-payoff that Player \bigcirc can guarantee:

$$
\operatorname{Val}_{\mathrm{O}}(v)=\inf _{\sigma_{\square} \sigma_{\mathrm{O}}} \sup \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)
$$

Smallest mean-payoff that Player \square can guarantee:

$$
\operatorname{Val}_{\square}(v)=\sup _{\sigma_{0}} \inf _{\square} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)
$$

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

1. Mean-payoff games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{ll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v) \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\sigma_{\mathrm{O}}} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array}
$$

3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.

1. Mean-payoff games are determined

$$
\operatorname{Val}_{\square}(v)=\sup _{\sigma_{\mathrm{O}}} \inf _{\square}^{\sigma_{\square}} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right) \quad \inf _{\sigma_{\square} \sigma_{\mathrm{O}}} \sup \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)=\operatorname{Val}_{\mathrm{O}}(v)
$$

1. Mean-payoff games are determined

$$
\operatorname{Val}_{\square}(v)=\sup _{\sigma_{0}} \inf _{\sigma_{\square}} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right) \leq \inf _{\sigma_{\square} \sigma_{\mathrm{O}}} \sup \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)=\operatorname{Val}_{\mathrm{O}}(v)
$$

1. Mean-payoff games are determined

$$
\operatorname{Val}_{\square}(v)=\sup _{\sigma_{0}} \inf _{\square}^{\sigma_{\square}} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right) \leq \inf _{\sigma_{\square} \sigma_{\mathrm{O}}} \sup \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}\right)\right)=\operatorname{Val}_{\mathrm{O}}(v)
$$

Determinacy (inequality \geq) can be restated as:

$$
\forall \boldsymbol{\alpha} \quad \begin{array}{ll}
\text { either Player } \bigcirc \text { has a strategy to force a MP } \geq \alpha \\
& \text { or Player } \square \text { has a strategy to force a MP }<\alpha
\end{array}
$$

First-cycle game

Unfold the weighted graph up to a first repetition of vertex: - a leaf is winning for Player \bigcirc if the cycle has a sum ≥ 0

- a leaf is winning for Player \square if the cycle has a sum <0

First-cycle game

Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player \bigcirc if the cycle has a sum ≥ 0
- a leaf is winning for Player \square if the cycle has a sum <0

First-cycle game

Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player \bigcirc if the cycle has a sum ≥ 0
- a leaf is winning for Player \square if the cycle has a sum <0

By Zermelo's theorem: either Player \bigcirc can force non-negative cycles or Player \square can force negative cycles

First-cycle game

Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player \bigcirc if the cycle has a sum ≥ 0
- a leaf is winning for Player \square if the cycle has a sum <0

By Zermelo's theorem: either Player \bigcirc can force non-negative cycles or Player \square can force negative cycles

either Player \bigcirc has a memoryless strategy to force a MP ≥ 0
or Player \square has a memoryless strategy to force a MP <0

Mean-payoff games

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

1. Mean-payoff games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{ll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}}^{\operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v)} \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\sigma_{\mathrm{O}}} \operatorname{MP}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array}
$$

3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.

Discounted-payoff games

Memoryless determinacy

Theorem (Zwick-Paterson 1997)

1. Discounted-payoff games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{ll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v) \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\sigma_{0}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array}
$$

3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.

Proof: finite horizon

$$
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\ \min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases}
$$

Proof: finite horizon

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime} \in E\right.}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
F: \mathbf{R}^{V} \rightarrow \mathbf{R}^{V} \quad \text { contraction mapping }
\end{gathered}
$$

Proof: finite horizon

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime} \in E\right.}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
F: \mathbf{R}^{V} \rightarrow \mathbf{R}^{V} \quad \text { contraction mapping }
\end{gathered}
$$

$$
F\left(x^{*}\right)=x^{*}
$$

Proof: finite horizon

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime} \in E\right.}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
F: \mathbf{R}^{V} \rightarrow \mathbf{R}^{V} \quad \text { contraction mapping }
\end{gathered}
$$

By Banach theorem, unique fixed point

$$
F\left(x^{*}\right)=x^{*}
$$

$$
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})
$$

Proof: finite horizon

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
F: \mathbf{R}^{V} \rightarrow \mathbf{R}^{V} \quad \text { contraction mapping }
\end{gathered}
$$

By Banach theorem, unique fixed point

$$
F\left(x^{*}\right)=x^{*}
$$

$$
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})
$$

following strategies dictated by $F\left(x^{*}\right)=x^{*}$

$$
\operatorname{Val}_{\mathrm{O}}(v) \leq x_{v}^{*} \leq \operatorname{Val}_{\square}(v)
$$

Proof: finite horizon

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
F: \mathbf{R}^{V} \rightarrow \mathbf{R}^{V} \quad \text { contraction mapping }
\end{gathered}
$$

By Banach theorem, unique fixed point

$$
F\left(x^{*}\right)=x^{*}
$$

$$
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})
$$

following strategies dictated by $F\left(x^{*}\right)=x^{*}$

$$
\operatorname{Val}_{\mathrm{O}}(v) \leq x_{v}^{*} \leq \operatorname{Val}_{\square}(v)
$$

always true
$\operatorname{Val}_{\square}(v) \leq \operatorname{Val}_{\mathrm{O}}(v)$

Proof: finite horizon

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
F: \mathbf{R}^{V} \rightarrow \mathbf{R}^{V} \quad \text { contraction mapping }
\end{gathered}
$$

By Banach theorem, unique fixed point

$$
F\left(x^{*}\right)=x^{*}
$$

$$
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})
$$

following strategies dictated by $F\left(x^{*}\right)=x^{*}$

$$
\begin{aligned}
& \operatorname{Val}_{\mathrm{O}}(v) \leq x_{v}^{*} \leq \operatorname{Val}_{\square}(v) \\
& x^{*}=\mathrm{Val}
\end{aligned}
$$

always true
$\operatorname{Val}_{\square}(v) \leq \operatorname{Val}_{\mathrm{O}}(v)$

Memoryless determinacy

Theorem (Zwick-Paterson 1997)

1. Discounted-payoff games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{ll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v) \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\sigma_{0}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array}
$$

3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.

How to compute optimal values?

$$
\begin{gathered}
F(x)_{v}=\left\{\begin{array}{cl}
\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{(v, v) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}
\end{array}\right. \\
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})
\end{gathered}
$$

How to compute optimal values?

$$
\begin{gathered}
F(x)_{v}=\left\{\begin{array}{cl}
\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square}
\end{array}\right. \\
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})
\end{gathered}
$$

When to stop the computation, supposing every weight is rational?

How to compute optimal values?

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square} \\
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})\end{cases}
\end{gathered}
$$

When to stop the computation, supposing every weight is rational?

1. If $\lambda=a / b$ is rational, then x_{v}^{*} is rational too, of denominator $D=b^{O\left(|V|^{2}\right)}$

How to compute optimal values?

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square} \\
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})\end{cases}
\end{gathered}
$$

When to stop the computation, supposing every weight is rational?

1. If $\lambda=a / b$ is rational, then x_{v}^{*} is rational too, of denominator $D=b^{O\left(|V|^{2}\right)}$
2. If K is big enough (polynomial in $|V|$, exponential in λ), then

$$
\left\|F^{K}(\mathbf{0})-\operatorname{Val}\right\|_{\infty} \leq 1 / 2 D
$$

How to compute optimal values?

$$
\begin{gathered}
F(x)_{v}= \begin{cases}\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square} \\
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})\end{cases}
\end{gathered}
$$

When to stop the computation, supposing every weight is rational?

1. If $\lambda=a / b$ is rational, then x_{v}^{*} is rational too, of denominator $D=b^{O\left(|V|^{2}\right)}$
2. If K is big enough (polynomial in $|V|$, exponential in λ), then $\left\|F^{K}(\mathbf{0})-\mathrm{Val}\right\|_{\infty} \leq 1 / 2 D$
3. Use a rounding procedure to deduce Val from $F^{K}(\mathbf{0})$

How to compute optimal values?

$$
\begin{gathered}
F(x)_{v}=\left\{\begin{array}{cl}
\max _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[(1-\lambda) r\left(v, v^{\prime}\right)+\lambda x_{v^{\prime}}\right] & \text { if } v \in V_{\square} \\
x^{*}=\lim _{n \rightarrow \infty} F^{n}(\mathbf{0})
\end{array}\right.
\end{gathered}
$$

When to stop the computation, supposing every weight is rational?

1. If $\lambda=a / b$ is rational, then x_{v}^{*} is rational too, of denominator $D=b^{O\left(|V|^{2}\right)}$
2. If K is big enough (polynomial in $|V|$, exponential in λ), then $\left\|F^{K}(\mathbf{0})-\mathrm{Val}\right\|_{\infty} \leq 1 / 2 D$
3. Use a rounding procedure to deduce Val from $F^{K}(\mathbf{0})$

Pseudo-polynomial algorithm

Shortest-path games

Shortest-path games

Player \square wants to reach the target with the smallest weight
Player \bigcirc wants to avoid the target, and if not possible, maximise the weight to the target

Non-negative case

Theorem (Khachiyan et al 2008)

1. Shortest-path games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{ll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v) \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\sigma_{0}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array}
$$

3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

Non-negative case

Theorem (Khachiyan et al 2008)

1. Shortest-path games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{ll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v) \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\sigma_{0}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array}
$$

3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

Adaptation of Dijkstra's shortest-path algorithm from graphs to games...

Negative weights

Negative weights

Player \square needs memory to play optimally!

Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)

1. Shortest-path games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{lll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v) & ->\text { memoryless } \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\mathrm{DP}}^{\lambda} & \left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array} \quad \rightarrow \text { may require finite memory }
$$

3. The winner, with respect to a fixed threshold, can be decided in pseudopolynomial time.

Computation of the optimal values

$$
F(x)_{v}= \begin{cases}0 & \text { if } v \in V_{\text {target }} \\ \max _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\ \min _{\left(v, v^{\prime} \in E\right.}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases}
$$

Computation of the optimal values

$$
\begin{aligned}
F(x)_{v}= \begin{cases}0 & \text { if } v \in V_{\mathrm{target}} \\
\max _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
+\infty
\end{aligned}
$$

Computation of the optimal values

$$
F(x)_{v}= \begin{cases}0 & \text { if } v \in V_{\text {target }} \\ \max _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\ \min _{\left(v, v^{\prime} \in E\right.}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases}
$$ $+\infty$

$+\infty$

$+\infty$
0

Computation of the optimal values

$$
F(x)_{v}= \begin{cases}0 & \text { if } v \in V_{\text {target }} \\ \max _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\ \min _{\left(v, v^{\prime} \in E\right.}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases}
$$

$+\infty$
$+\infty$
-1

$+\infty$
0
0

Computation of the optimal values

Computation of the optimal values

Computation of the optimal values

$$
F(x)_{v}= \begin{cases}0 & \text { if } v \in V_{\text {target }} \\ \max _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\mathrm{O}} \\ \min _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases}
$$

Computation of the optimal values

Computation of the optimal values

$$
\begin{aligned}
& F(x)_{v}= \begin{cases}0 & \text { if } v \in V_{\text {target }} \\
\max _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{\left.v^{\prime}\right]}\right] & \text { if } v \in V_{\mathrm{O}} \\
\min _{\left(v, v^{\prime}\right) \in E}\left[r\left(v, v^{\prime}\right)+x_{v^{\prime}}\right] & \text { if } v \in V_{\square}\end{cases} \\
& +\infty \\
& +\infty \\
& -1 \\
& -1 \\
& -2 \\
& \ldots
\end{aligned}
$$

Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)

1. Shortest-path games are determined: $\forall v \quad \operatorname{Val}_{\mathrm{O}}(v)=\operatorname{Val}_{\square}(v)=: \operatorname{Val}(v)$
2. Both players have optimal memoryless strategies:

$$
\begin{array}{lll}
\exists \sigma_{\mathrm{O}}^{*} \forall v & \inf _{\sigma_{\square}} \mathrm{DP}_{\lambda}\left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}^{*}, \sigma_{\square}\right)\right)=\operatorname{Val}(v) & ->\text { memoryless } \\
\exists \sigma_{\square}^{*} \forall v & \sup _{\mathrm{DP}}^{\lambda} & \left(\operatorname{play}\left(v, \sigma_{\mathrm{O}}, \sigma_{\square}^{*}\right)\right)=\operatorname{Val}(v)
\end{array} \quad \rightarrow \text { may require finite memory }
$$

3. The winner, with respect to a fixed threshold, can be decided in pseudopolynomial time.

Interesting fragment?

Interesting fragment?

only case where pseudo-polynomial complexity...

Divergent weighted games

No cycles of weight $=0$

Divergent weighted games

No cycles of weight $=0$
Characterisation (Busatto-Gaston, Monmege, Reynier 2017) All cycles in an SCC have the same sign.

Divergent weighted games

No cycles of weight $=0$
Characterisation (Busatto-Gaston, Monmege, Reynier 2017) All cycles in an SCC have the same sign.
$p \geqslant 1$
$-q \leqslant-1$

Divergent weighted games

No cycles of weight $=0$
Characterisation (Busatto-Gaston, Monmege, Reynier 2017) All cycles in an SCC have the same sign.
$p \geqslant 1$
$-q \leqslant-1$

Divergent weighted games

No cycles of weight $=0$

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

 All cycles in an SCC have the same sign.

In positive SCCs, value iteration algorithm converges in polynomial time.
In negative SCCs:

1. outside the attractor of Player $\bigcirc \quad \rightarrow>$ value $-\infty$
2. value iteration algorithm starting from $-\infty$ (instead of $+\infty$) converges in polynomial time

Divergent weighted games

No cycles of weight $=0$

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

 All cycles in an SCC have the same sign.

In positive SCCs, value iteration algorithm converges in polynomial time.
In negative SCCs :

1. outside the attractor of Player $\bigcirc \quad \rightarrow>$ value $-\infty$
2. value iteration algorithm starting from $-\infty$ (instead of $+\infty$) converges in polynomial time
Theorem (Busatto-Gaston, Monmege, Reynier 2017)
Optimal values/strategies in divergent weighted games are computable in polynomial time.

Environment $\|$ Controller?? \models Spec
Two-player game

Environment || Controller?? \models Spec Two-player game

Among all valid controllers, choose a cheap/efficient one Two-player weighted game

Environment || Controller?? \models Spec Two-player game

Among all valid controllers, choose a cheap/efficient one Two-player weighted game

Additional difficulty: negative weights
\Longrightarrow to model production/consumption of resources

Environment $\| \quad$ Controller?? \models Spec Two-player game

Real-time requirements/environment \Longrightarrow real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one Two-player weighted timed game

Additional difficulty: negative weights
\Longrightarrow to model production/consumption of resources

$15 \mathrm{c} € / \mathrm{kWh}$
rate: total power $\times 15 \mathrm{c} € / \mathrm{h}$ total power $\times 12 \mathrm{c} € / \mathrm{h}$

$15 \mathrm{c} € / \mathrm{kWh}$
rate: total power $\times 15 \mathrm{c} € / \mathrm{h}$ total power $\times 12 \mathrm{c} € / \mathrm{h}$
states to record which device is on/off: computation of the total power

states to record which device is on/off: computation of the total power

Power consumption:

100W (1.5 c€/h in peak-hour, 1.2 c ($/ \mathrm{h}$ in offpeak-hour)

2500W (37.5 $\mathrm{c} € / \mathrm{h}$ in peak-hour, $30 \mathrm{c} € / \mathrm{h}$ in offpeak-hour)

2000W (24 c€/h in offpeak-hour)

$$
\begin{array}{ccc}
\text { Peak-hour } & \text { Offpeak-hour } & \text { Solar panels } \\
15 \mathrm{c} € / \mathrm{kWh} & 12 \mathrm{c} \in / \mathrm{kWh} & \text { Reselling: } 20 \mathrm{c} \in / \mathrm{kW} \\
\text { rate: total power } \times 15 \mathrm{c} € / \mathrm{h} & \text { total power } \times 12 \mathrm{c} € / \mathrm{h} & -0.5 \times 20 \mathrm{c} \in / \mathrm{h}
\end{array}
$$

```
                Peak-hour:0
    15c€/kWh 12c€/kWh
    rate: total power }\times15\textrm{c}€/\textrm{h}\mathrm{ total power }\times12c€/
```

Solar panels
Reselling: $20 \mathrm{c} € / \mathrm{kWh}$ $-0.5 \times 20 c € / h$
states to record which device is on/off: computation of the total power

states to record which device is on/off: computation of the total power
Environment: user profile, weather profile 滞 / \&
Controller: chooses contract (discrete cost for the monthly subscription) and exact consumption (what, when...)

states to record which device is on/off: computation of the total power
Environment: user profile, weather profile 带 / \%
Controller: chooses contract (discrete cost for the monthly subscription) and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

states to record which device is on/off: computation of the total power
Environment: user profile, weather profile 带 / \& \%
Controller: chooses contract (discrete cost for the monthly subscription) and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost
Solution 1 : discretisation of time, resolution via a weighted game Solution 2 : thin time behaviours, resolution via a weighted timed game

Weighted timed games

Timed automaton with state partition between

2 players + reachability objective + linear rates on states

+ discrete weights on transitions

$$
\begin{aligned}
& \left(s_{1}, 0\right) \xrightarrow{0.4, \searrow}\left(s_{4}, 0.4\right) \xrightarrow{0.6, \rightarrow}\left(s_{5}, 0\right) \xrightarrow{1.5, \leftarrow}\left(s_{4}, 0\right) \xrightarrow{1.1, \rightarrow}\left(s_{5}, 0\right) \xrightarrow{2, \nearrow}(\checkmark, 2) \\
& \mathbf{1 \times 0 . 4 + \mathbf { 1 }} \quad-\mathbf{3 \times 0 . 6 + \mathbf { 0 }} \quad+\mathbf{1 \times 1 . 5 + \mathbf { 0 }} \quad \mathbf{- 3 \times 1 . 1 + \mathbf { 0 }} \quad+\mathbf{1 \times 2 + \mathbf { 2 }} \quad=1.8
\end{aligned}
$$

Weighted timed games

Timed automaton with state partition between

2 players + reachability objective + linear rates on states

+ discrete weights on transitions

$$
\begin{aligned}
& \left(s_{1}, 0\right) \xrightarrow{0.4, \searrow}\left(s_{4}, 0.4\right) \xrightarrow{0.6, \rightarrow}\left(s_{5}, 0\right) \xrightarrow{1.5, \leftarrow}\left(s_{4}, 0\right) \xrightarrow{1.1, \rightarrow}\left(s_{5}, 0\right) \xrightarrow{2, \nearrow}(\checkmark, 2) \\
& \mathbf{1 \times 0 . 4 + \mathbf { 1 }} \quad-\mathbf{3 \times 0 . 6 + 0} \quad+\mathbf{1} \times 1.5+\mathbf{0} \quad \mathbf{- 3 \times 1 . 1 + \mathbf { 0 }} \quad+\mathbf{1} \times 2+\mathbf{2} \quad=1.8
\end{aligned}
$$

$$
\left(s_{1}, 0\right) \xrightarrow{0.2, \nearrow}\left(s_{2}, 0\right) \xrightarrow{0.9, \rightarrow}\left(s_{3}, 0.9\right) \xrightarrow{0.2, \varnothing}\left(s_{3}, 0\right) \xrightarrow{0.9, \varnothing}\left(s_{3}, 0\right) \quad \cdots \quad .
$$

