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Synthesise a correct-by-design one!

Winning strategy = Correct system
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Who is winning?

WinO ⊆ V
ω

set of good outcomes for Player 1

Win□ = V
ω∖WinO

(zero-sum game)

Examples of winning conditions: 

WinO = {π ∣ π visits Good} reachability

WinO = {π ∣ π visits Good infinitely often} Büchi
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Strategies
Unfolding of the game graph:

Strategy for Player ◯: one choice in 

each node of Player ◯ in unfolding

σO : V*VO → E

Strategy is winning if all paths 
of the resulting tree are winning
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Types of strategies
Strategy (infinite memory)

σO : V*VO → E

Memoryless/positional strategy

σO : VO → E

Finite memory strategy

σO : V*VO → E representable with a Moore machine

Randomised strategy

σO : V*VO → Distr(E)
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Decision problem

Given a game graph G and a winning condition 

        decide if Player ◯ has a winning strategy.

WinO

What about Player ?□
Determinacy (true in a large class of objectives, e.g. all ω-regular objectives)

either Player ◯ has a winning strategy for


or Player  has a winning strategy for □

WinO

Win□ = V
ω∖WinO
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Example: finite trees

either Player ◯ has a strategy to force


or Player  has a strategy to force  □

Zermelo’s theorem

= determinacy

Proof by induction on the depth of the tree

Each node can be labelled bottom-up:  

• in green if Player ◯ can force     from there 

• in red if Player  can force     from there□
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Example: reachability in graphs

Apply the same bottom-up rule… 


…to decide the winner and find winning strategies

WinO = {π ∣ π visits Good}

Win□ = {π ∣ π avoids Good}
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Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Winning strategy = Correct system

Arena + Player □
Player ◯

Winning condition

What if several winning strategies for Player ◯? 

Need for a quality measure, to choose the best one…
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Quantitative games on graphs

Weighted graph: weights=rewards

Be good in total: total-payoff

∞

∑
i=0

r
i

Be good in average: mean-payoff lim inf
n→∞

1

n

n−1

∑
i=0

r
i

may not exist… 

WinO = {π ∣ MP(π) ≥ c} not ω-regular…
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Mean-payoff games

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)
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2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

MP(play(v, σ*
O

, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

MP(play(v, σO, σ*
□

)) = Val(v)

Greatest mean-payoff that Player ◯ can guarantee: 

ValO(v) = inf
σ□

sup
σO

MP(play(v, σO, σ□))

Smallest mean-payoff that Player  can guarantee: □

Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))



1. Mean-payoff games are determined

inf
σ□

sup
σO

MP(play(v, σO, σ□)) = ValO(v)Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))



1. Mean-payoff games are determined

inf
σ□

sup
σO

MP(play(v, σO, σ□)) = ValO(v)Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))≤



1. Mean-payoff games are determined

inf
σ□

sup
σO

MP(play(v, σO, σ□)) = ValO(v)Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))≤

Determinacy (inequality ≥) can be restated as: 

either Player ◯ has a strategy to force a MP  


or Player  has a strategy to force a MP

≥ α

□ < α
∀α
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First-cycle game

either Player ◯ has a memoryless strategy to force a MP  


or Player  has a memoryless strategy to force a MP

≥ 0

□ < 0

Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player ◯ if the cycle has a sum 

- a leaf is winning for Player  if the cycle has a sum 

≥ 0

□ < 0

By Zermelo's theorem: 

either Player ◯ can force non-negative cycles  

or Player  can force negative cycles□

transfer of strategies



Mean-payoff games
Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)


1. Mean-payoff games are determined: 
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Discounted-payoff games

Be good soon enough: (1 − λ)

∞

∑
i=0

λ
i
r
i

0 < λ < 1

When  only prefixes matter


When  DP looks a lot like MP

λ → 0

λ → 1

λ = 0.5

λ = 0.1

λ = 0.9 same strategy as for MP



Memoryless determinacy
Theorem (Zwick-Paterson 1997)
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2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)



Proof: finite horizon

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□



Proof: finite horizon

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□

F : R
V → R

V contraction mapping



Proof: finite horizon

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*



Proof: finite horizon

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)



Proof: finite horizon

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)

ValO(v) ≤ x*
v

≤ Val□(v)

following strategies dictated by  F(x*) = x*



Proof: finite horizon

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)

ValO(v) ≤ x*
v

≤ Val□(v)

following strategies dictated by  F(x*) = x*

Val□(v) ≤ ValO(v)

always true



Proof: finite horizon

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)

ValO(v) ≤ x*
v

≤ Val□(v)

following strategies dictated by  F(x*) = x*

Val□(v) ≤ ValO(v)

always true

x* = Val



Memoryless determinacy
Theorem (Zwick-Paterson 1997)


1. Discounted-payoff games are determined: 


2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.
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How to compute optimal values?

F(x)
v

= {
max(v,v′ )∈E

[(1 − λ)r(v, v′ ) + λx
v′ 
] if v ∈ VO

min(v,v′ )∈E
[(1 − λ)r(v, v′ ) + λx

v′ 
] if v ∈ V□

x* = lim
n→∞

F
n(0)

When to stop the computation, supposing every weight is rational?

1. If  is rational, then  is rational too, of denominator λ = a/b x*
v

D = b
O(|V|2)

2. If  is big enough (polynomial in , exponential in ), then K |V | λ

∥F
K(0) − Val∥∞ ≤ 1/2D

3. Use a rounding procedure to deduce  from Val F
K(0)

Pseudo-polynomial algorithm
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Shortest-path games

Player  wants to reach the target with the smallest weight


Player ◯ wants to avoid the target, and if not possible, maximise the weight to the target 

□
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Theorem (Khachiyan et al 2008)
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Non-negative case

Theorem (Khachiyan et al 2008)


1. Shortest-path games are determined: 


2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

Adaptation of Dijkstra’s shortest-path algorithm from graphs to games… 
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Negative weights

Player  needs memory to play optimally!□



Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)


1. Shortest-path games are determined: 


2. Both players have optimal memoryless strategies: 

                                  —>   memoryless


                                  —>   may require finite memory


3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.
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O
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□

∀v sup
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λ
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□
)) = Val(v)
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Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)


1. Shortest-path games are determined: 


2. Both players have optimal memoryless strategies: 

                                  —>   memoryless


                                  —>   may require finite memory


3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

Polynomial wrt |V| 
Polynomial wrt weights encoded in unary
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only case where pseudo-polynomial complexity… 
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Divergent weighted games
No cycles of weight = 0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)


All cycles in an SCC have the same sign.

p > 1

−q 6 −1 −q 6 −1

α

β

p > 1

In positive SCCs, value iteration algorithm converges in polynomial time.

In negative SCCs : 


1. outside the attractor of Player ◯    —>   value 


2. value iteration algorithm starting from  (instead of ) converges in 

polynomial time
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Theorem (Busatto-Gaston, Monmege, Reynier 2017)


Optimal values/strategies in divergent weighted games are computable in 
polynomial time.
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=∆ to model production/consumption of resources
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Peak-hour Offpeak-hour

15 ce/kWh 12 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h

states to record which device is on/off: computation of the total power

Power consumption:

I 100W (1.5 ce/h in peak-hour, 1.2 ce/h in offpeak-hour)

I 2500W (37.5 ce/h in peak-hour, 30 ce/h in offpeak-hour)

I 2000W (24 ce/h in offpeak-hour)
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Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game

Solution 2 : thin time behaviours, resolution via a weighted timed game
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Weighted timed games

1 s1

2

s2

−1

s3

−3

s4

1

s5

� s6

x > 0

x := 0

0

x 6 1

1

x 6 2

0

x < 1

x := 0

0

x > 1

1
x > 1

x := 0

0

x > 1

x := 0

0

x > 1

2

Timed automaton

with state partition between

2 players

+ reachability objective

+ linear rates on states

+ discrete weights on

transitions

(s1, 0)
0.4,√

−−−−→(s4, 0.4)
0.6,æ

−−−−→(s5, 0)
1.5,Ω

−−−−→(s4, 0)
1.1,æ

−−−−→(s5, 0)
2,¬

−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8
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I

+ if not reached
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2-exp. + symbolic algorithm
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poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks
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Thank you!


