
Quantitative Games
on Graphs

Benjamin Monmege, Aix-Marseille Université

Séminaire ENS Rennes

Games for synthesis

Games for synthesis

Crucial to make the critical programs correct

Games for synthesis

Crucial to make the critical programs correct

Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Winning strategy = Correct system

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

Play: move a token along vertices

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

Play: move a token along vertices

Infinite number of rounds

Outcome: infinite path

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

Play: move a token along vertices

Infinite number of rounds

Outcome: infinite path

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

Play: move a token along vertices

Infinite number of rounds

Outcome: infinite path

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

Play: move a token along vertices

Infinite number of rounds

Outcome: infinite path

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

Play: move a token along vertices

Infinite number of rounds

Outcome: infinite path

2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯

Vertices of Player □

Play: move a token along vertices

Infinite number of rounds

Outcome: infinite path

Who is winning?

Who is winning?

WinO ⊆ V
ω

set of good outcomes for Player 1

Who is winning?

WinO ⊆ V
ω

set of good outcomes for Player 1

Win□ = V
ω∖WinO

(zero-sum game)

Who is winning?

WinO ⊆ V
ω

set of good outcomes for Player 1

Win□ = V
ω∖WinO

(zero-sum game)

Examples of winning conditions:

WinO = {π ∣ π visits Good} reachability

Who is winning?

WinO ⊆ V
ω

set of good outcomes for Player 1

Win□ = V
ω∖WinO

(zero-sum game)

Examples of winning conditions:

WinO = {π ∣ π visits Good} reachability

WinO = {π ∣ π visits Good infinitely often} Büchi

Strategies
Unfolding of the game graph:

Strategies
Unfolding of the game graph:

Strategies
Unfolding of the game graph:

Strategy for Player ◯: one choice in

each node of Player ◯ in unfolding

σO : V*VO → E

Strategies
Unfolding of the game graph:

Strategy for Player ◯: one choice in

each node of Player ◯ in unfolding

σO : V*VO → E

Strategy is winning if all paths
of the resulting tree are winning

Types of strategies

Types of strategies
Strategy (infinite memory)

σO : V*VO → E

Types of strategies
Strategy (infinite memory)

σO : V*VO → E

Memoryless/positional strategy

σO : VO → E

Types of strategies
Strategy (infinite memory)

σO : V*VO → E

Memoryless/positional strategy

σO : VO → E

Finite memory strategy

σO : V*VO → E representable with a Moore machine

Types of strategies
Strategy (infinite memory)

σO : V*VO → E

Memoryless/positional strategy

σO : VO → E

Finite memory strategy

σO : V*VO → E representable with a Moore machine

Randomised strategy

σO : V*VO → Distr(E)

Decision problem

Given a game graph G and a winning condition

 decide if Player ◯ has a winning strategy.

WinO

Decision problem

Given a game graph G and a winning condition

 decide if Player ◯ has a winning strategy.

WinO

What about Player ?□
Determinacy (true in a large class of objectives, e.g. all ω-regular objectives)

either Player ◯ has a winning strategy for

or Player has a winning strategy for □

WinO

Win□ = V
ω∖WinO

Example: finite trees

Example: finite trees

Branch = a play in the game tree

Example: finite trees

Branch = a play in the game tree

Winning for Player ◯ if ends in

Winning for Player if ends in □

Example: finite trees

Example: finite trees

either Player ◯ has a strategy to force

or Player has a strategy to force □

Zermelo’s theorem

Example: finite trees

either Player ◯ has a strategy to force

or Player has a strategy to force □

Zermelo’s theorem

= determinacy

Example: finite trees

either Player ◯ has a strategy to force

or Player has a strategy to force □

Zermelo’s theorem

= determinacy

Proof by induction on the depth of the tree

Each node can be labelled bottom-up:

• in green if Player ◯ can force from there

• in red if Player can force from there□

Example: reachability in graphs

WinO = {π ∣ π visits Good}

Win□ = {π ∣ π avoids Good}

Example: reachability in graphs

Apply the same bottom-up rule…

WinO = {π ∣ π visits Good}

Win□ = {π ∣ π avoids Good}

Example: reachability in graphs

Apply the same bottom-up rule…

…to decide the winner and find winning strategies

WinO = {π ∣ π visits Good}

Win□ = {π ∣ π avoids Good}

Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Winning strategy = Correct system

Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Winning strategy = Correct system

Arena + Player □
Player ◯

Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Winning strategy = Correct system

Arena + Player □
Player ◯

Winning condition

Games for synthesis

Crucial to make the critical programs correct

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Winning strategy = Correct system

Arena + Player □
Player ◯

Winning condition

What if several winning strategies for Player ◯?

Need for a quality measure, to choose the best one…

Quantitative games on graphs

Quantitative games on graphs

Weighted graph: weights=rewards

Quantitative games on graphs

Weighted graph: weights=rewards

Quantitative games on graphs

Weighted graph: weights=rewards

Be good in total: total-payoff

∞

∑
i=0

r
i

Quantitative games on graphs

Weighted graph: weights=rewards

Be good in total: total-payoff

∞

∑
i=0

r
i

may not exist…

Quantitative games on graphs

Weighted graph: weights=rewards

Be good in total: total-payoff

∞

∑
i=0

r
i

Be good in average: mean-payoff lim inf
n→∞

1

n

n−1

∑
i=0

r
i

may not exist…

Quantitative games on graphs

Weighted graph: weights=rewards

Be good in total: total-payoff

∞

∑
i=0

r
i

Be good in average: mean-payoff lim inf
n→∞

1

n

n−1

∑
i=0

r
i

may not exist…

WinO = {π ∣ MP(π) ≥ c} not ω-regular…

Mean-payoff games
Be good in average: lim inf

n→∞

1

n

n−1

∑
i=0

r
i

Mean-payoff games
Be good in average: lim inf

n→∞

1

n

n−1

∑
i=0

r
i

Mean-payoff games
Greatest mean-payoff that Player ◯ can guarantee:

ValO(v) = inf
σ□

sup
σO

MP(play(v, σO, σ□))

Mean-payoff games
Greatest mean-payoff that Player ◯ can guarantee:

ValO(v) = inf
σ□

sup
σO

MP(play(v, σO, σ□))

Smallest mean-payoff that Player can guarantee: □

Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))

Mean-payoff games

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

1. Mean-payoff games are determined:

2. Both players have optimal memoryless strategies:

3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

MP(play(v, σ*
O

, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

MP(play(v, σO, σ*
□

)) = Val(v)

Greatest mean-payoff that Player ◯ can guarantee:

ValO(v) = inf
σ□

sup
σO

MP(play(v, σO, σ□))

Smallest mean-payoff that Player can guarantee: □

Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))

1. Mean-payoff games are determined

inf
σ□

sup
σO

MP(play(v, σO, σ□)) = ValO(v)Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))

1. Mean-payoff games are determined

inf
σ□

sup
σO

MP(play(v, σO, σ□)) = ValO(v)Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))≤

1. Mean-payoff games are determined

inf
σ□

sup
σO

MP(play(v, σO, σ□)) = ValO(v)Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))≤

Determinacy (inequality ≥) can be restated as:

either Player ◯ has a strategy to force a MP

or Player has a strategy to force a MP

≥ α

□ < α
∀α

First-cycle game
Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player ◯ if the cycle has a sum

- a leaf is winning for Player if the cycle has a sum

≥ 0

□ < 0

First-cycle game
Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player ◯ if the cycle has a sum

- a leaf is winning for Player if the cycle has a sum

≥ 0

□ < 0

First-cycle game
Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player ◯ if the cycle has a sum

- a leaf is winning for Player if the cycle has a sum

≥ 0

□ < 0

By Zermelo's theorem: 

either Player ◯ can force non-negative cycles  

or Player can force negative cycles□

First-cycle game

either Player ◯ has a memoryless strategy to force a MP

or Player has a memoryless strategy to force a MP

≥ 0

□ < 0

Unfold the weighted graph up to a first repetition of vertex:

- a leaf is winning for Player ◯ if the cycle has a sum

- a leaf is winning for Player if the cycle has a sum

≥ 0

□ < 0

By Zermelo's theorem: 

either Player ◯ can force non-negative cycles  

or Player can force negative cycles□

transfer of strategies

Mean-payoff games
Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

1. Mean-payoff games are determined:

2. Both players have optimal memoryless strategies:

3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

MP(play(v, σ*
O

, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

MP(play(v, σO, σ*
□

)) = Val(v)

Discounted-payoff games

Be good soon enough: (1 − λ)

∞

∑
i=0

λ
i
r
i

0 < λ < 1

Discounted-payoff games

Be good soon enough: (1 − λ)

∞

∑
i=0

λ
i
r
i

0 < λ < 1

When only prefixes matter

When DP looks a lot like MP

λ → 0

λ → 1

Discounted-payoff games

Be good soon enough: (1 − λ)

∞

∑
i=0

λ
i
r
i

0 < λ < 1

When only prefixes matter

When DP looks a lot like MP

λ → 0

λ → 1

λ = 0.9 same strategy as for MP

Discounted-payoff games

Be good soon enough: (1 − λ)

∞

∑
i=0

λ
i
r
i

0 < λ < 1

When only prefixes matter

When DP looks a lot like MP

λ → 0

λ → 1

λ = 0.5

λ = 0.9 same strategy as for MP

Discounted-payoff games

Be good soon enough: (1 − λ)

∞

∑
i=0

λ
i
r
i

0 < λ < 1

When only prefixes matter

When DP looks a lot like MP

λ → 0

λ → 1

λ = 0.5

λ = 0.1

λ = 0.9 same strategy as for MP

Memoryless determinacy
Theorem (Zwick-Paterson 1997)

1. Discounted-payoff games are determined:

2. Both players have optimal memoryless strategies:

3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

Proof: finite horizon

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

Proof: finite horizon

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

F : R
V → R

V contraction mapping

Proof: finite horizon

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*

Proof: finite horizon

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)

Proof: finite horizon

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)

ValO(v) ≤ x*
v

≤ Val□(v)

following strategies dictated by F(x*) = x*

Proof: finite horizon

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)

ValO(v) ≤ x*
v

≤ Val□(v)

following strategies dictated by F(x*) = x*

Val□(v) ≤ ValO(v)

always true

Proof: finite horizon

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

F : R
V → R

V contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
F

n(0)

ValO(v) ≤ x*
v

≤ Val□(v)

following strategies dictated by F(x*) = x*

Val□(v) ≤ ValO(v)

always true

x* = Val

Memoryless determinacy
Theorem (Zwick-Paterson 1997)

1. Discounted-payoff games are determined:

2. Both players have optimal memoryless strategies:

3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

F

0

B

B

B

B

@

xv0

xv1

xv2

xv3

xv4

1

C

C

C

C

A

=

0

B

B

B

B

@

max
�

4(1�λ)+λxv1
,(1�λ)5+λxv4

�

min
�

λxv0
,2(1�λ)+λxv2

�

max
�

(1�λ)+λxv2
,4(1�λ)+λxv3

�

min
�

�2(1�λ)+λxv0
,�(1�λ)+λxv1

�

min
�

�2(1�λ)+λxv0
,2(1�λ)+λxv4

�

1

C

C

C

C

A

How to compute optimal values?

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

x* = lim
n→∞

F
n(0)

How to compute optimal values?

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

x* = lim
n→∞

F
n(0)

When to stop the computation, supposing every weight is rational?

How to compute optimal values?

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

x* = lim
n→∞

F
n(0)

When to stop the computation, supposing every weight is rational?

1. If is rational, then is rational too, of denominator λ = a/b x*
v

D = b
O(|V|2)

How to compute optimal values?

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

x* = lim
n→∞

F
n(0)

When to stop the computation, supposing every weight is rational?

1. If is rational, then is rational too, of denominator λ = a/b x*
v

D = b
O(|V|2)

2. If is big enough (polynomial in , exponential in), then K |V | λ

∥F
K(0) − Val∥∞ ≤ 1/2D

How to compute optimal values?

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

x* = lim
n→∞

F
n(0)

When to stop the computation, supposing every weight is rational?

1. If is rational, then is rational too, of denominator λ = a/b x*
v

D = b
O(|V|2)

2. If is big enough (polynomial in , exponential in), then K |V | λ

∥F
K(0) − Val∥∞ ≤ 1/2D

3. Use a rounding procedure to deduce from Val F
K(0)

How to compute optimal values?

F(x)
v

= {
max(v,v′)∈E

[(1 − λ)r(v, v′) + λx
v′
] if v ∈ VO

min(v,v′)∈E
[(1 − λ)r(v, v′) + λx

v′
] if v ∈ V□

x* = lim
n→∞

F
n(0)

When to stop the computation, supposing every weight is rational?

1. If is rational, then is rational too, of denominator λ = a/b x*
v

D = b
O(|V|2)

2. If is big enough (polynomial in , exponential in), then K |V | λ

∥F
K(0) − Val∥∞ ≤ 1/2D

3. Use a rounding procedure to deduce from Val F
K(0)

Pseudo-polynomial algorithm

Shortest-path games

Shortest-path games

Player wants to reach the target with the smallest weight

Player ◯ wants to avoid the target, and if not possible, maximise the weight to the target

□

Non-negative case

Theorem (Khachiyan et al 2008)

1. Shortest-path games are determined:

2. Both players have optimal memoryless strategies:

3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

Non-negative case

Theorem (Khachiyan et al 2008)

1. Shortest-path games are determined:

2. Both players have optimal memoryless strategies:

3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

Adaptation of Dijkstra’s shortest-path algorithm from graphs to games…

Negative weights

Negative weights

Player needs memory to play optimally!□

Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)

1. Shortest-path games are determined:

2. Both players have optimal memoryless strategies:

 —> memoryless

 —> may require finite memory

3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞
+∞ 0

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞
+∞ 0
−1 0

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞
+∞ 0
−1 0
−1 −1

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞
+∞ 0
−1 0
−1 −1
−2 −1

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞
+∞ 0
−1 0
−1 −1
−2 −1

… …

−100 −100

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞
+∞ 0
−1 0
−1 −1
−2 −1

… …

−100 −100
−100 −100

Computation of the optimal values

F(x)
v

=

0 if v ∈ Vtarget

max(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ VO

min(v,v′)∈E
[r(v, v′) + x

v′
] if v ∈ V□

+∞ +∞
+∞ 0
−1 0
−1 −1
−2 −1

… …

−100 −100
−100 −100

s
tr

a
te

g
y
 o

f
p

la
y
e
r

□

Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)

1. Shortest-path games are determined:

2. Both players have optimal memoryless strategies:

 —> memoryless

 —> may require finite memory

3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*
O

∀v inf
σ□

DP
λ
(play(v, σ*

O
, σ□)) = Val(v)

∃σ*
□

∀v sup
σO

DP
λ
(play(v, σO, σ*

□
)) = Val(v)

Polynomial wrt |V|
Polynomial wrt weights encoded in unary

Interesting fragment?

Interesting fragment?

only case where pseudo-polynomial complexity…

Divergent weighted games
No cycles of weight = 0

Divergent weighted games
No cycles of weight = 0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

All cycles in an SCC have the same sign.

Divergent weighted games
No cycles of weight = 0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

All cycles in an SCC have the same sign.

p > 1

−q 6 −1

Divergent weighted games
No cycles of weight = 0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

All cycles in an SCC have the same sign.

p > 1

−q 6 −1 −q 6 −1

α

β

p > 1

Divergent weighted games
No cycles of weight = 0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

All cycles in an SCC have the same sign.

p > 1

−q 6 −1 −q 6 −1

α

β

p > 1

In positive SCCs, value iteration algorithm converges in polynomial time.

In negative SCCs :

1. outside the attractor of Player ◯ —> value

2. value iteration algorithm starting from (instead of) converges in

polynomial time

−∞

−∞ +∞

Divergent weighted games
No cycles of weight = 0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

All cycles in an SCC have the same sign.

p > 1

−q 6 −1 −q 6 −1

α

β

p > 1

In positive SCCs, value iteration algorithm converges in polynomial time.

In negative SCCs :

1. outside the attractor of Player ◯ —> value

2. value iteration algorithm starting from (instead of) converges in

polynomial time

−∞

−∞ +∞

Theorem (Busatto-Gaston, Monmege, Reynier 2017)

Optimal values/strategies in divergent weighted games are computable in
polynomial time.

Environment Î Controller?? |= Spec

Two-player game

Real-time requirements/environment =∆ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Additional difficulty: negative weights

=∆ to model production/consumption of resources

Environment Î Controller?? |= Spec

Two-player game

Real-time requirements/environment =∆ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Additional difficulty: negative weights

=∆ to model production/consumption of resources

Environment Î Controller?? |= Spec

Two-player game

Real-time requirements/environment =∆ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Additional difficulty: negative weights

=∆ to model production/consumption of resources

Environment Î Controller?? |= Spec

Two-player game

Real-time requirements/environment =∆ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Additional difficulty: negative weights

=∆ to model production/consumption of resources

Peak-hour Offpeak-hour

15 ce/kWh 12 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h

states to record which device is on/off: computation of the total power

Power consumption:

I 100W (1.5 ce/h in peak-hour, 1.2 ce/h in offpeak-hour)

I 2500W (37.5 ce/h in peak-hour, 30 ce/h in offpeak-hour)

I 2000W (24 ce/h in offpeak-hour)

Peak-hour Offpeak-hour

15 ce/kWh 12 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h

states to record which device is on/off: computation of the total power

Power consumption:

I 100W (1.5 ce/h in peak-hour, 1.2 ce/h in offpeak-hour)

I 2500W (37.5 ce/h in peak-hour, 30 ce/h in offpeak-hour)

I 2000W (24 ce/h in offpeak-hour)

Peak-hour Offpeak-hour

15 ce/kWh 12 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h

states to record which device is on/off: computation of the total power

Power consumption:

I 100W (1.5 ce/h in peak-hour, 1.2 ce/h in offpeak-hour)

I 2500W (37.5 ce/h in peak-hour, 30 ce/h in offpeak-hour)

I 2000W (24 ce/h in offpeak-hour)

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game

Solution 2 : thin time behaviours, resolution via a weighted timed game

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game

Solution 2 : thin time behaviours, resolution via a weighted timed game

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game

Solution 2 : thin time behaviours, resolution via a weighted timed game

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game

Solution 2 : thin time behaviours, resolution via a weighted timed game

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game

Solution 2 : thin time behaviours, resolution via a weighted timed game

Weighted timed games

1 s1

2

s2

−1

s3

−3

s4

1

s5

� s6

x > 0

x := 0

0

x 6 1

1

x 6 2

0

x < 1

x := 0

0

x > 1

1
x > 1

x := 0

0

x > 1

x := 0

0

x > 1

2

Timed automaton

with state partition between

2 players

+ reachability objective

+ linear rates on states

+ discrete weights on

transitions

(s1, 0)
0.4,√

−−−−→(s4, 0.4)
0.6,æ

−−−−→(s5, 0)
1.5,Ω

−−−−→(s4, 0)
1.1,æ

−−−−→(s5, 0)
2,¬

−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

Weighted timed games

1 s1

2

s2

−1

s3

−3

s4

1

s5

� s6

x > 0

x := 0

0

x 6 1

1

x 6 2

0

x < 1

x := 0

0

x > 1

1
x > 1

x := 0

0

x > 1

x := 0

0

x > 1

2

Timed automaton

with state partition between

2 players

+ reachability objective

+ linear rates on states

+ discrete weights on

transitions

(s1, 0)
0.4,√

−−−−→(s4, 0.4)
0.6,æ

−−−−→(s5, 0)
1.5,Ω

−−−−→(s4, 0)
1.1,æ

−−−−→(s5, 0)
2,¬

−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

�

× − × × − × ×

(s1, 0)
0.2,¬

−−−−→(s2, 0)
0.9,æ

−−−−→(s3, 0.9)
0.2,

−−−−→(s3, 0)
0.9,

−−−−→(s3, 0) · · ·

1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

I

+ if not reached

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

Thank you!

